Contents
raw puzzle

Problem 25

The Fibonacci sequence is defined by the recurrence relation:

Fn = Fn−1 + Fn−2, where F1 = 1 and F2 = 1.

Hence the first 12 terms will be:

F1 = 1
F2 = 1
F3 = 2
F4 = 3
F5 = 5
F6 = 8
F7 = 13
F8 = 21
F9 = 34
F10 = 55
F11 = 89
F12 = 144

The 12th term, F12, is the first term to contain three digits.

What is the index of the first term in the Fibonacci sequence to contain 1000 digits?

Solution

Lemma: Length \(L(n)\) of number \(n\): \[ \begin{array}{rl} & 10^{d-1} \leq n < 10^d\\ \Leftrightarrow & (d-1) \cdot \log(10) \leq \log(n) < d \cdot \log(10)\\ \Leftrightarrow & (d-1) \leq \log(n) / \log(10) < d\\ \Leftrightarrow & d \leq \log_{10}(n) + 1 < d + 1\\ \Leftrightarrow & d = \lfloor1 + \log_{10}(n)\rfloor\\ \Leftrightarrow & L(n) = \lfloor 1 + \log_{10}(n)\rfloor \end{array} \]

The nth fibonacci number has a well known closed formula using the golden ratio:

\[F(n) = \frac{\Phi^n - (-\Phi)^{-n}}{\sqrt{5}}\]

As \(n\) will become quite large, we can ignore the subtrahend of this formula and simplify the expression a bit, or more formally:

\[\lim\limits_{n\to\infty} F(n) =\lim\limits_{n\to\infty} \frac{\Phi^n - (-\Phi)^{-n}}{\sqrt{5}} = \frac{\Phi^n}{\sqrt{5}}\]

Okay, now let's bring together the two things:

\[ \begin{array}{rl} L(F(n)) &= \lfloor 1 + \log_{10}(\Phi^n / \sqrt{5})\rfloor\\ &= \lfloor 1 + n \cdot \log_{10}(\Phi) - 0.5 \cdot\log_{10}(5)\rfloor \end{array} \]

We now can use this for our 1000 digit fibonacci number and solve:

\[ \begin{array}{rl} & 1000 < 1 + d \cdot \log_{10}(\Phi) - 0.5 \cdot \log_{10}(5)\\ \Leftrightarrow& 999 < d \cdot \log_{10}(\Phi) - 0.5 \cdot \log_{10}(5)\\ \Leftrightarrow& d > (999 + 0.5 \cdot\log_{10}(5)) / \log_{10}(\Phi)\\ \Leftrightarrow& d > (999 \cdot\log(10) + 0.5 \cdot\log(5)) / \log(\Phi)\\ \Rightarrow& d = \lceil(999 \cdot\log(10) + 0.5 \cdot\log(5)) / \log(\Phi)\rceil \end{array} \]

Compressing all constants and formulating it for a general \(n\), the implementation can then be stated as:

function solution(n) {
  return Math.ceil(4.78497 * n - 3.1127);
}
solution(1000);