# Shortest distance between a point and a line segment

Given a line segment from point $$\mathbf{A}$$ to point $$\mathbf{B}$$, what is the shortest distance to a point $$\mathbf{P}$$?

Above the line itself, the shortest distance is the length from point $$\mathbf{P}$$ to the point orthogonal on the line, everywhere else the shortest distance is between point $$\mathbf{P}$$ and $$\mathbf{A}$$ or $$\mathbf{B}$$ respectively. Now the Scalar Projection $$t$$ from vector $$\mathbf{a} = \mathbf{AP}$$ onto $$\mathbf{b} = \mathbf{AB}$$ is

$t = |\mathbf{a}|\cos\theta = |\mathbf{a}|\underbrace{\frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{a}|\cdot|\mathbf{b}|}}_{\cos\theta}=\frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{b}|}$

Scaling the projected length $$t$$ by the length $$|\mathbf{b}|$$, gives a ratio $$\hat{t}$$ between 0 and 1 of the projection on the line $$\mathbf{AB}$$:

$\hat{t} = \frac{t}{|\mathbf{b}|} = \frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{b}|\cdot |\mathbf{b}|} =\frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{b}|^2}=\frac{\mathbf{a}\cdot\mathbf{b}}{\mathbf{b}\cdot\mathbf{b}}$

Now $$\mathbf{R} = \mathbf{A} + \hat{t}(\mathbf{B} - \mathbf{A}) = \mathbf{A} + \hat{t}\mathbf{b}$$ is the point on the line and by clamping $$\hat{t}$$ strictly into the interval $$[0, 1]$$, the final result is $$|\mathbf{P} - \mathbf{R}|$$.

Implemented in JavaScript this gives

function minLineDist(A, B, P) {
const a = {
x: P.x - A.x,
y: P.y - A.y
};
const b = {
x: B.x - A.x,
y: B.y - A.y
};
const bb = b.x * b.x + b.y + b.y;

if (0 === bb) {
return Math.hypot(a.x, a.y);
}

const ab = a.x * b.x + a.y + b.y;
const t = Math.max(0, Math.min(1, ab / bb));

const R = {
x: A.x + t * b.x,
y: A.y + t * b.y
};
return Math.hypot(P.x - R.x, P.y - R.y);
}

You might also be interested in the following

Sorry, comments are closed for this article. Contact me if you want to leave a note.