# Codingame Solution: Factorial vs Exponential

## Goal

For each of the given numbers \(A\), find the smallest integer \(N\), such that \(A^N < N!\) , where \(N! = 1 \cdot 2 \cdot ... \cdot N\)The numbers given can have up to 2 digits after decimal point.

**Input**

**Line 1:**An integer \(K\) for the number of inputs.

**Line 2:**\(K\) space separated numbers (can have a fractional part, e.g. 1.5): \( A_1 , A_2 , ... , A_K\)

**Output**

**Line 1:**\(K\) space separated integers: \( N_1 , N_2 , ... , N_K\) .

**Constraints**

\(1 ≤ K ≤ 100\)

\(1 < A_i < 10000\)

\(1 < A_i < 10000\)

## Solution

I first thought it's a fun number theoretic problem again, similar to dividing the factorial, where Legendre's formula could be used. However, \(A\) is a decimal number and so the whole thing doesn't make sense anymore. The only thing we can do is the following:

\[A^N< N!\Leftrightarrow N<\log_A{N!} = \sum\limits_{i=1}^N\log_Ai = \frac{1}{\log A} \sum\limits_{i=1}^N\log i\]

It follows that we simply loop over the logarithms until the stated condition breaks. The last integer \(N\) we see this way is the smallest fulfilling the initial statement.

var K = +readline(); var inputs = readline().split(' '); var R = []; for (var k = 0; k < K; k++) { var i = 0 var s = 0; var logA = Math.log(inputs[k]); do { s+= Math.log(++i); } while(s <= i * logA); R.push(i); } print(R.join(" "));